OÙ SONT LES MATHEUX ?

Froissing, Kirigami, et autres ....
Eric Joisel
Status : Hors ligne

OÙ SONT LES MATHEUX ?

Messagepar Eric Joisel » 23 mai 2009, 15:58

Tiens, dans la partie technique du forum, on ne parle QUE du matériau,
pas de mathématiques par exemple. C'est pas du tout mon truc, mais
la délicieuse Anne Lavin pose une question amusante sur The List :
(et peut être avez-vous ou pouvez-vous trouver la réponse...) :wink:

Comment transformer un carré en rectangle de proportion A ?
Bien sûr autrement qu'en mesurant. Le gagnant sera celui (ou celle évidemment)
dont le rectangle obtenu sera le plus grand possible, et déterminé
avec le moins de plis possibles, et si possible sans "pre-creases"
dans le rectangle. Je suis bien incapable d'une telle performance...
ÇA VOUS INSPIRE ?

So, what are everyone's favorite way(s) to turn a square into an
A-proportioned sheet? (Other than measuring with a ruler, of course.)
Bonus points for maximum use of the original square, and for minimal
extra creases in the A-proportioned bit.
Anne

Avatar de l’utilisateur
gachepapier
Ori Sensei
Messages : 2641
Enregistré le : 26 mai 2008, 11:14
skype :
Localisation : plus à l'Est
Contact :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar gachepapier » 23 mai 2009, 16:35

au pif, avec la feuille disposée avec un coin au nord, au sud etc... :

- tirer une diagonale Est Ouest et déplier
- rapporter le bord Nord Est dessus en gardant le coin Est fixe
- rabattre le coin Ouest vers le centre et marquer un pli là ou se trouve le bord Est, sans marquer le pli ailleur que sur la diagonale
- tout déplier
- la croix indique où doit passer le bord du rectangle A, il a la taille maximum
gachepapier

mon blog.

Marculus
Messages : 45
Enregistré le : 19 sept. 2007, 18:41
skype :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Marculus » 23 mai 2009, 17:41

Pfeu Facile !!! Non je deconne ! C'est quoi un rectangle de "proportion A" ? :oops:

Eric Joisel
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Eric Joisel » 23 mai 2009, 18:28

Tu utilises tous les jours du A4, soit 21 x 29,7 cm.
Le A3 fait le double, le A2 le quadruple, etc... jusqu'au A0 (qui sauf erreur) fait exactement une surface d'1 m2.
Le ratio entre 21 et 29,7 est = à √2.

Avatar de l’utilisateur
bobbob
Ori Sensei
Messages : 1479
Enregistré le : 16 juin 2005, 08:48
skype :
Localisation : Loire
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar bobbob » 24 mai 2009, 12:23

Réponse fainéante: Robert Lang n'a-t'il pas réalisé un logiciel répondant à ce type de questions?
(donnant une séquence de plis pour trouver n'importe quel point de référence)
inscrivez vous sur la carte des membres du forum:
Image

Eric Joisel
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Eric Joisel » 24 mai 2009, 12:33

C'est effectivement une vraie réponse de fainéant, Bobbob ! :lol:
J'espère que tu n'applique pas la même méthode pour tes examens...

Avatar de l’utilisateur
hubologo
Messages : 139
Enregistré le : 08 mars 2009, 17:39
skype :
Localisation : Caen
Contact :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar hubologo » 24 mai 2009, 13:17


Marculus
Messages : 45
Enregistré le : 19 sept. 2007, 18:41
skype :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Marculus » 24 mai 2009, 14:24

Tu utilises tous les jours du A4, soit 21 x 29,7 cm.


Effectivement ! Je me sens un peu bete la... :oops:

Avatar de l’utilisateur
Dachale
Messages : 86
Enregistré le : 08 avr. 2007, 13:55
skype :
Contact :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Dachale » 24 mai 2009, 20:25

Image

Alors j'ai fait une photo pour expliquer

si on veut faire le plus grand rectangle possible il faut que le coté du carré soit la longueur qui fait A√2 si ce cote fait A√2, le triangle isocele rectangle formé avec le centre du carré aura les deux autres longueurs eaglent à a (pyhtagore peut vous le montrer)

en pliant la bissectrice d'un des angles a 45° on formera avec la seconde diagonale un sommet du triangle T1, la perpendiculaire au cote horizontale et qui passe par ce point permettra de former le triangle T2
ces deux triangles ont des angles et des cotes egaux deux a deux (ils sont isometriques) donc la longueur a va etre reporté comme ca sur le coté horizontale.

on obtient ainsi un rectangle format A.

En clair on plie les deux diagonales, on plie la bissectrice d'un des deux diagonales et l'intersection de cette droite avec l'autre diagonale permet d'avoir un point de reference, et on fait une perpendiculaire au coté qui passe par ce point et voila. Tout ca en 4 plis (on peut minimiser l'impact des plis en ne faisant que la marque pour la bissectrice)

Si quelqu'un veut rediger la phase d eplaige de facon plus adapté qu'il hesite pas :cc:

Avatar de l’utilisateur
gachepapier
Ori Sensei
Messages : 2641
Enregistré le : 26 mai 2008, 11:14
skype :
Localisation : plus à l'Est
Contact :
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar gachepapier » 23 juil. 2009, 20:34

(je reprend cet ancien sujet)

Pour faire le contraire :

De A ---> carré

Il suffit de tracer une ligne a 22,5° partant d'un coin et de remonter perpendiculairement avec les ciseaux !!! 8)

Je ne l'ai pas inventé, mais je trouve que ça vaut le détour :

http://freenet-homepage.de/origamichris ... e_v3.0.pdf
gachepapier

mon blog.

Avatar de l’utilisateur
Dahut
Ancien
Messages : 284
Enregistré le : 09 juin 2009, 22:50
skype :
Localisation : Paris
Status : Hors ligne

Re: OÙ SONT LES MATHEUX ?

Messagepar Dahut » 23 juil. 2009, 22:06

(Je découvre le sujet, et bizarrement vu que je suis prof de maths, je me sens concerné... :wink: )

bobbob a écrit :Réponse fainéante: Robert Lang n'a-t'il pas réalisé un logiciel répondant à ce type de questions?
(donnant une séquence de plis pour trouver n'importe quel point de référence)


Attention, le "Reference Finder" de R. Lang ne donne que des constructions approchées (alors que parfois il y a des constructions exactes à peine plus compliquées). Quand on reste dans les rapport du genre sqrt(2) (rapport L/l dans une feuille au format A) ou avec des angles à 22,5° et 67,5° (de tangentes respectives sqrt(2)-1 et sqrt(2)+1), les constructions exactes sont en général plus élégantes que les constructions approchées données par Reference Finder, meme si ce dernier les considère plus simples (parce qu'il ne compte que le nombre de plis et pas la simplicité des plis, et parce qu'il ne considère que la feuille à plat, chaque pli est imédiatement après déplié, ce qui lui fait perdre par exemple les constructions de type Haga).


Pour en revenir à la feuille format A, un autre aspect que je trouve très agréable concerne l'obtention très simple de deux grands triangles rectangles isocèles de meme taille dans une feuille A4, pour plier en série la Happy Good-Luck Bat de M. Lafosse par exemple :

Image

Ce n'est pas le plus grand triangle qu'on puisse découpe dans une feuille A4, la construction suivante en donne un 8% plus grand :

Image

Mais entre deux triangles de 29,7 cm d'hypothénuse (dans une feuille A4) et un seul de 32,1 cm, je préfère encore en avoir deux...
Ma page flickr


Retourner vers « Non Traditionnel »

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré